Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
PeerJ ; 12: e16751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406288

RESUMO

Corynebacterium pseudotuberculosis is a gram-positive bacterium and is the etiologic agent of caseous lymphadenitis (CL) in small ruminants. This disease is characterized by the development of encapsulated granulomas in visceral and superficial lymph nodes, and its clinical treatment is refractory to antibiotic therapy. An important virulence factor of the Corynebacterium genus is the ability to produce biofilm; however, little is known about the characteristics of the biofilm produced by C. pseudotuberculosis and its resistance to antimicrobials. Silver nanoparticles (AgNPs) are considered as promising antimicrobial agents, and are known to have several advantages, such as a broad-spectrum activity, low resistance induction potential, and antibiofilm activity. Therefore, we evaluate herein the activity of AgNPs in C. pseudotuberculosis, through the determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity, and visualization of AgNP-treated and AgNP-untreated biofilm through scanning electron microscopy. The AgNPs were able to completely inhibit bacterial growth and inactivate C. pseudotuberculosis at concentrations ranging from 0.08 to 0.312 mg/mL. The AgNPs reduced the formation of biofilm in reference strains and clinical isolates of C. pseudotuberculosis, with interference values greater than 80% at a concentration of 4 mg/mL, controlling the change between the planktonic and biofilm-associated forms, and preventing fixation and colonization. Scanning electron microscopy images showed a significant disruptive activity of AgNP on the consolidated biofilms. The results of this study demonstrate the potential of AgNPs as an effective therapeutic agent against CL.


Assuntos
Anti-Infecciosos , Infecções por Corynebacterium , Corynebacterium pseudotuberculosis , Linfadenite , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Nanopartículas Metálicas/uso terapêutico , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Infecções por Corynebacterium/tratamento farmacológico , Linfadenite/tratamento farmacológico , Biofilmes
2.
Adv Exp Med Biol ; 1443: 87-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38409417

RESUMO

Microbiotas are an adaptable component of ecosystems, including human ecology. Microorganisms influence the chemistry of their specialized niche, such as the human gut, as well as the chemistry of distant surroundings, such as other areas of the body. Metabolomics based on mass spectrometry (MS) is one of the primary methods for detecting and identifying small compounds generated by the human microbiota, as well as understanding the functional significance of these microbial metabolites. This book chapter gives basic knowledge on the kinds of untargeted mass spectrometry as well as the data types that may be generated in the context of microbiome study. While data analysis remains a barrier, the emphasis is on data analysis methodologies and integrative analysis, particularly the integration of microbiome sequencing data. Mass spectrometry (MS)-based techniques have resurrected culture methods for studying the human gut microbiota, filling in the gaps left by high-throughput sequencing methods in terms of culturing minor populations.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
3.
Adv Exp Med Biol ; 1443: 243-256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38409425

RESUMO

Proteomics has grown in importance in molecular sciences because it gives vital information on protein identification, expression levels, and alteration. Cancer is one of the world's major causes of death and is the major focus of much research. Cancer risk is determined by hereditary variables as well as the body's immunological condition. Probiotics have increasing medical importance due to their therapeutic influence on the human body in the prevention and treatment of numerous chronic illnesses, including cancer, with no adverse effects. Several anticancer, anti-inflammatory, and chemopreventive probiotics are studied using different proteomic approaches like two-dimensional gel electrophoresis, liquid chromatography-mass spectrometry, and matrix-assisted laser desorption/ionization mass spectrometry. To gain relevant information about probiotic characteristics, data from the proteomic analysis are evaluated and processed using bioinformatics pipelines. Proteomic studies showed the significance of different proteomic approaches in characterization, comparing strains, and determination of oxidative stress of different probiotics. Moreover, proteomic approaches identified different proteins that are involved in glucose metabolism and the formation of cell walls or cell membranes, and the differences in the expression of critical enzymes in the HIF-1 signaling pathway, starch, and sucrose metabolism, and other critical metabolic pathways.


Assuntos
Neoplasias , Probióticos , Humanos , Proteínas de Bactérias/metabolismo , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Probióticos/uso terapêutico , Neoplasias/prevenção & controle , Eletroforese em Gel Bidimensional
4.
Comput Biol Med ; 170: 107899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232455

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscoresthe dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Pandemias , Filogenia , COVID-19/genética , Replicação Viral/genética , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Mutação/genética
5.
Psychol Res Behav Manag ; 16: 4839-4857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38050640

RESUMO

Loneliness, an established risk factor for both, mental and physical morbidity, is a mounting public health concern. However, the neurobiological mechanisms underlying loneliness-related morbidity are not yet well defined. Here we examined the role of genes and associated DNA risk polymorphic variants that are implicated in loneliness via genetic and epigenetic mechanisms and may thus point to specific therapeutic targets. Searches were conducted on PubMed, Medline, and EMBASE databases using specific Medical Subject Headings terms such as loneliness and genes, neuro- and epigenetics, addiction, affective disorders, alcohol, anti-reward, anxiety, depression, dopamine, cancer, cardiovascular, cognitive, hypodopaminergia, medical, motivation, (neuro)psychopathology, social isolation, and reward deficiency. The narrative literature review yielded recursive collections of scientific and clinical evidence, which were subsequently condensed and summarized in the following key areas: (1) Genetic Antecedents: Exploration of multiple genes mediating reward, stress, immunity and other important vital functions; (2) Genes and Mental Health: Examination of genes linked to personality traits and mental illnesses providing insights into the intricate network of interaction converging on the experience of loneliness; (3) Epigenetic Effects: Inquiry into instances of loneliness and social isolation that are driven by epigenetic methylations associated with negative childhood experiences; and (4) Neural Correlates: Analysis of loneliness-related affective states and cognitions with a focus on hypodopaminergic reward deficiency arising in the context of early life stress, eg, maternal separation, underscoring the importance of parental support early in life. Identification of the individual contributions by various (epi)genetic factors presents opportunities for the creation of innovative preventive, diagnostic, and therapeutic approaches for individuals who cope with persistent feelings of loneliness. The clinical facets and therapeutic prospects associated with the current understanding of loneliness, are discussed emphasizing the relevance of genes and DNA risk polymorphic variants in the context of loneliness-related morbidity.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37804433

RESUMO

Bacteria of the Leuconostoc genus are Gram-positive bacteria that are commonly found in raw milk and persist in fermented dairy products and plant food. Studies have already explored the probiotic potential of L. mesenteroides, but not from a probiogenomic perspective, which aims to explore the molecular features responsible for their phenotypes. In the present work, probiogenomic approaches were applied in strains F-21 and F-22 of L. mesenteroides isolated from human milk to assess their biosafety at the molecular level and to correlate molecular features with their potential probiotic characteristics. The complete genome of strain F-22 is 1.99 Mb and presents one plasmid, while the draft genome of strain F-21 is 1.89 Mb and presents four plasmids. A high percentage of average nucleotide identity among other genomes of L. mesenteroides (≥ 96%) corroborated the previous taxonomic classification of these isolates. Genomic regions that influence the probiotic properties were identified and annotated. Both strains exhibited wide genome plasticity, cell adhesion ability, proteolytic activity, proinflammatory and immunomodulation capacity through interaction with TLR-NF-κB and TLR-MAPK pathway components, and no antimicrobial resistance, denoting their potential to be candidate probiotics. Further, the strains showed bacteriocin production potential and the presence of acid, thermal, osmotic, and bile salt resistance genes, indicating their ability to survive under gastrointestinal stress. Taken together, our results suggest that L. mesenteroides F-21 and F-22 are promising candidates for probiotics in the food and pharmaceutical industries.

7.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631008

RESUMO

Nutrigenomics is the study of the impact of diets or nutrients on gene expression and phenotypes using high-throughput technologies such as transcriptomics, proteomics, metabolomics, etc. The bioactive components of diets and nutrients, as an environmental factor, transmit information through altered gene expression and hence the overall function and traits of the organism. Dietary components and nutrients not only serve as a source of energy but also, through their interactions with genes, regulate gut microbiome composition, the production of metabolites, various biological processes, and finally, health and disease. Antimicrobial resistance in pathogenic and probiotic microorganisms has emerged as a major public health concern due to the presence of antimicrobial resistance genes in various food products. Recent evidence suggests a correlation between the regulation of genes and two-component and other signaling systems that drive antibiotic resistance in response to diets and nutrients. Therefore, diets and nutrients may be alternatively used to overcome antibiotic resistance against novel antibiotics. However, little progress has been made in this direction. In this review, we discuss the possible implementations of nutrigenomics in antibiotic resistance against novel antibiotics.

8.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375370

RESUMO

With the significant growth of patients suffering from neurodegenerative diseases (NDs), novel classes of compounds targeting monoamine oxidase type B (MAO-B) are promptly emerging as distinguished structures for the treatment of the latter. As a promising function of computer-aided drug design (CADD), structure-based virtual screening (SBVS) is being heavily applied in processes of drug discovery and development. The utilization of molecular docking, as a helping tool for SBVS, is providing essential data about the poses and the occurring interactions between ligands and target molecules. The current work presents a brief discussion of the role of MAOs in the treatment of NDs, insight into the advantages and drawbacks of docking simulations and docking software, and a look into the active sites of MAO-A and MAO-B and their main characteristics. Thereafter, we report new chemical classes of MAO-B inhibitors and the essential fragments required for stable interactions focusing mainly on papers published in the last five years. The reviewed cases are separated into several chemically distinct groups. Moreover, a modest table for rapid revision of the revised works including the structures of the reported inhibitors together with the utilized docking software and the PDB codes of the crystal targets applied in each study is provided. Our work could be beneficial for further investigations in the search for novel, effective, and selective MAO-B inhibitors.


Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Descoberta de Drogas , Desenho de Fármacos , Relação Estrutura-Atividade
9.
Res Microbiol ; 174(7): 104086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37307910

RESUMO

Salmonella Typhimurium is an important agent of foodborne diseases. In Peru, the emergence of multidrug-resistant isolates of S. Typhimurium from the food chain could be linked to guinea pig farming as a potential reservoir and their uncontrolled antibiotic treatment against salmonellosis. In this study, we performed the sequencing, genomic diversity, and characterization of resistance elements transmitted by isolates from farm and meat guinea pigs. The genomic diversity and antimicrobial resistance of S. Typhimurium isolates were performed using nucleotide similarity, cgMLST, serotyping, phylogenomic analyses, and characterization of resistance plasmids. We found at least four populations of isolates from farm guinea pigs and four populations from meat guinea pigs without finding isolated transmission between both resources. Genotypic resistance to antibiotics was observed in at least 50% of the isolates. Among the farm guinea pig isolates, ten were found to be resistant to nalidixic acid, and two isolates exhibited multidrug resistance to aminoglycosides, tetracycline-fluoroquinolone (carrying strA-strB-tetA-tetB genes and gyrA S83F mutation), or trimethoprim-sulfonamide (carrying AaadA1-drfA15-sul1 genes). Additionally, two isolates from the meat source were resistant to fluoroquinolones (one of which had enrofloxacin resistance). The transmissible resistance plasmids with insertion sequences (IS) such as IncI-gamma-K1-ISE3-IS6, IncI1-I (alpha)-IS21-Tn10, and Col (pHAD28) were commonly found in isolates belonging to the HC100-9757 cluster from both guinea pigs and human hosts. Altogether, our work provides resistance determinants profiles and Salmonella sp. circulating lineages using WGS data that can promote better sanitary control and adequate antimicrobial prescription.

10.
Biomedicines ; 11(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37239140

RESUMO

COVID-19 vaccines have been widely used to reduce the incidence and disease severity of COVID-19. Questions have lately been raised about the possibility of an association between COVID-19 vaccines and myocarditis, an inflammatory condition affecting the myocardium, or the middle layer of the heart. Myocarditis can be caused by infections, immune reactions, or toxic exposure. The incidence rate of myocarditis and pericarditis was calculated to be 5.98 instances per million COVID-19 vaccine doses delivered, which is less than half of the incidences after SARS-CoV-2 infection. Myocarditis rates in people aged 12 to 39 years are around 12.6 cases per million doses following the second dose of mRNA vaccination. Adolescent men are more likely than women to develop myocarditis after receiving mRNA vaccines. The objectives of this systematic review and meta-analysis are to find out how often myocarditis occurs after receiving the COVID-19 vaccine, as well as the risk factors and clinical repercussions of this condition. Nevertheless, the causal relationship between vaccination and myocarditis has been difficult to establish, and further research is required. It is also essential to distinguish between suggested cases of myocarditis and those confirmed by endomyocardial biopsy.

11.
Indian J Med Res ; 157(4): 293-303, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102510

RESUMO

Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.


Assuntos
COVID-19 , Ingredientes de Alimentos , Humanos , Nutrigenômica , Dióxido de Carbono , Lipopolissacarídeos , Pandemias , Síndrome da Liberação de Citocina , Ácido Palmítico , SARS-CoV-2 , Dieta/métodos , Comportamento Alimentar , Zinco , Chá , Ferro , Triglicerídeos
12.
Curr Med Chem ; 30(39): 4390-4408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998130

RESUMO

The COVID-19 pandemic, caused by the coronavirus, SARS-CoV-2, has claimed millions of lives worldwide in the past two years. Fatalities among the elderly with underlying cardiovascular disease, lung disease, and diabetes have particularly been high. A bibliometrics analysis on author's keywords was carried out, and searched for possible links between various coronavirus studies over the past 50 years, and integrated them. We found keywords like immune system, immunity, nutrition, malnutrition, micronutrients, exercise, inflammation, and hyperinflammation were highly related to each other. Based on these findings, we hypothesized that the human immune system is a multilevel super complex system, which employs multiple strategies to contain microorganism infections and restore homeostasis. It was also found that the behavior of the immune system is not able to be described by a single immunological theory. However, one main strategy is "self-destroy and rebuild", which consists of a series of inflammatory responses: 1) active self-destruction of damaged/dysfunctional somatic cells; 2) removal of debris and cells; 3) rebuilding tissues. Thus, invading microorganisms' clearance could be only a passive bystander response to this destroy-rebuild process. Microbial infections could be self-limiting and promoted as an indispensable essential nutrition for the vast number of genes existing in the microorganisms. The transient nutrition surge resulting from the degradation of the self-destroyed cell debris coupled with the existing nutrition state in the patient may play an important role in the pathogenesis of COVID-19. Finally, a few possible coping strategies to mitigate COVID-19, including vaccination, are discussed.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Dieta de Imunonutrição , Pandemias , Inflamação
13.
J Pers Med ; 13(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836570

RESUMO

The North American opioid epidemic has resulted in over 800,000 related premature overdose fatalities since 2000, with the United States leading the world in highest opioid deaths per capita. Despite increased federal funding in recent years, intended to address this crisis, opioid overdose mortality has continued to increase. Legally prescribed opioids also chronically induce a problematic reduction in affect. While an ideal analgesic has yet to be developed, some effective multimodal non-opioid pharmacological regimens for acute pain management are being more widely utilized. Some investigators have suggested that a safer and more scientifically sound approach might be to induce "dopamine homeostasis" through non-pharmacological approaches, since opioid use even for acute pain of short duration is now being strongly questioned. There is also increasing evidence suggesting that some more robust forms of electrotherapy could be applied as an effective adjunct to avoid the problems associated with opioids. This 4-patient case-series presents such an approach to treatment of severe pain. All 4 of these chiropractic treatment cases involved a component of knee osteoarthritis, in addition to other reported areas of pain. Each patient engaged in a home recovery strategy using H-Wave® device stimulation (HWDS) to address residual extremity issues following treatment of spinal subluxation and other standard treatments. A simple statistical analysis was conducted to determine the change in pain scores (Visual Analogue Scale) of pre and post electrotherapy treatments, resulting in significant reductions in self-reported pain (p-value = 0.0002). Three of the four patients continued using the home therapy device long-term as determined by a post-analysis questionnaire. This small case-series demonstrated notably positive outcomes, suggesting consideration of home use of HWDS for safe, non-pharmacological and non-addictive treatment of severe pain.

14.
Genes (Basel) ; 14(2)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36833460

RESUMO

Acquired immunodeficiency syndrome (AIDS) is one of the most challenging infectious diseases to treat on a global scale. Understanding the mechanisms underlying the development of drug resistance is necessary for novel therapeutics. HIV subtype C is known to harbor mutations at critical positions of HIV aspartic protease compared to HIV subtype B, which affects the binding affinity. Recently, a novel double-insertion mutation at codon 38 (L38HL) was characterized in HIV subtype C protease, whose effects on the interaction with protease inhibitors are hitherto unknown. In this study, the potential of L38HL double-insertion in HIV subtype C protease to induce a drug resistance phenotype towards the protease inhibitor, Saquinavir (SQV), was probed using various computational techniques, such as molecular dynamics simulations, binding free energy calculations, local conformational changes and principal component analysis. The results indicate that the L38HL mutation exhibits an increase in flexibility at the hinge and flap regions with a decrease in the binding affinity of SQV in comparison with wild-type HIV protease C. Further, we observed a wide opening at the binding site in the L38HL variant due to an alteration in flap dynamics, leading to a decrease in interactions with the binding site of the mutant protease. It is supported by an altered direction of motion of flap residues in the L38HL variant compared with the wild-type. These results provide deep insights into understanding the potential drug resistance phenotype in infected individuals.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Saquinavir/química , Saquinavir/farmacologia , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , HIV-1/genética , Protease de HIV/genética , Farmacorresistência Viral/genética
15.
Vaccines (Basel) ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851090

RESUMO

BACKGROUND: The mass vaccination of children against coronavirus 2019 disease (COVID-19) has been frequently debated. The risk-benefit assessment of COVID-19 vaccination versus infection in children has also been debated. AIM: This systematic review looked for answers to the question "was the vaccination of our children valuable and successful?". METHODS: The search strategy of different articles in the literature was based on medical subject headings. Screening and selection were based on inclusion/exclusion criteria. RESULTS AND DISCUSSION: The search results revealed that the majority of the reported adverse events after COVID-19 vaccination in pediatrics were mild to moderate, with few being severe. Injection site discomfort, fever, headache, cough, lethargy, and muscular aches and pains were the most prevalent side effects. Few clinical studies recorded significant side effects, although the majority of these adverse events had nothing to do with vaccination. In terms of efficacy, COVID-19 disease protection was achieved in 90-95% of cases for mRNA vaccines, in 50-80% of cases for inactivated vaccines, and in 58-92% of cases for adenoviral-based vaccines in children and adolescents. CONCLUSIONS: Based on available data, COVID-19 immunizations appear to be safe for children and adolescents. Furthermore, multiple studies have proven that different types of vaccines can provide excellent protection against COVID-19 in pediatric populations. The efficacy of vaccines against new SARS-CoV-2 variants and the reduction in vaccine-related long-term adverse events are crucial for risk-benefit and cost-effectiveness assessments; therefore, additional safety studies are required to confirm the long-term safety and effectiveness of vaccinations in children.

16.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851087

RESUMO

According to the WHO, as of January 2023, more than 850 million cases and over 6.6 million deaths from COVID-19 have been reported worldwide. Currently, the death rate has been reduced due to the decreased pathogenicity of new SARS-CoV-2 variants, but the major factor in the reduced death rates is the administration of more than 12.8 billion vaccine doses globally. While the COVID-19 vaccines are saving lives, serious side effects have been reported after vaccinations for several premature non-communicable diseases (NCDs). However, the reported adverse events are low in number. The scientific community must investigate the entire spectrum of COVID-19-vaccine-induced complications so that necessary safety measures can be taken, and current vaccines can be re-engineered to avoid or minimize their side effects. We describe in depth severe adverse events for premature metabolic, mental, and neurological disorders; cardiovascular, renal, and autoimmune diseases, and reproductive health issues detected after COVID-19 vaccinations and whether these are causal or incidental. In any case, it has become clear that the benefits of vaccinations outweigh the risks by a large margin. However, pre-existing conditions in vaccinated individuals need to be taken into account in the prevention and treatment of adverse events.

18.
Probiotics Antimicrob Proteins ; 15(1): 160-174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36028786

RESUMO

Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.


Assuntos
Lactobacillus plantarum , Mucosite , Probióticos , Animais , Humanos , Camundongos , Antibacterianos/metabolismo , Brasil , Células CACO-2 , Fluoruracila , Lactobacillaceae , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia
19.
Inflammation ; 46(1): 297-312, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36215001

RESUMO

Hyper-transmissibility with decreased disease severity is a typical characteristic of the SARS-CoV-2 Omicron variant. To understand this phenomenon, we used various bioinformatics approaches to analyze randomly selected genome sequences (one each) of the Gamma, Delta, and Omicron variants submitted to NCBI from December 15 to 31, 2021. We report that the pathogenicity of SARS-CoV-2 variants decreases in the order of Wuhan > Gamma > Delta > Omicron; however, the antigenic property follows the order of Omicron > Gamma > Wuhan > Delta. The Omicron spike RBD shows lower pathogenicity but higher antigenicity than other variants. The reported decreased disease severity by the Omicron variant may be due to its decreased pro-inflammatory and IL-6 stimulation and increased IFN-γ and IL-4 induction efficacy. The mutations in the N protein are probably associated with this decreased IL-6 induction and human DDX21-mediated increased IL-4 production for Omicron. Due to the mutations, the stability of S, M, N, and E proteins decreases in the order of Omicron > Gamma > Delta > Wuhan. Although a stronger spike RBD-hACE2 binding of Omicron increases its transmissibility, the lowest stability of its spike protein makes spike RBD-hACE2 interaction weak for systemic infection and for causing severe disease. Finally, the highest instability of the Omicron E protein may also be associated with decreased viral maturation and low viral load, leading to less severe disease and faster recovery. Our findings will contribute to the understanding of the dynamics of SARS-CoV-2 variants and the management of emerging variants. This minimal genome-based method may be used for other similar viruses avoiding robust analysis.


Assuntos
COVID-19 , Citocinas , Humanos , SARS-CoV-2/genética , Interleucina-4 , Interleucina-6 , Virulência , Fatores de Transcrição , Anti-Inflamatórios , RNA Helicases DEAD-box
20.
Cell Signal ; 103: 110559, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36521656

RESUMO

The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Vacinas contra COVID-19/metabolismo , Pandemias/prevenção & controle , Receptores Virais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...